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A few things about me

Hiking (multi-day trails)

Drumming (jazz)

Swimming
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* A motivating example




Motivating example

ESA Space Rider

* Reusable space craft

* Multi-million euro vehicle

e Return to Earth autonomously

* Landing-precision requirement: < 1 meter

Heavily nonlinear system, subject to harsh disturbances!
Need for accurate control with:
* Wide operating range

e Guaranteed stability & performance




Motivating example

Simplified aerodynamic model already rather complex...

» How to control this system?

Altitude

Flight controller design:

(X

* Hierarchal control structure (GNC)

* Needs to work for all operating conditions! o

llllll

Our control options?

* Nonlinear control? — Performance shaping? Guarantees?

* Robust control? = Why sacrifice performance if we know the altitude?

LTI

2y g

LTI

LTI

LTI

5000 5500




Motivating example

Engineers’ dream:

Design controllers for nonlinear systems with linear control synthesis and shaping concepts.

» ldea: Apply robust control by embedding variations as uncertainty.

» Result: Controller can only stabilize a narrow operating range

Robust control systematically trades performance for stability and the size of the
uncertainty a single LTI controller can stabilize is limited...

» Overcome limitations requires going beyond LTI systems

6 LPY
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Linear parameter-varying systems

Core aspects of LPV systems

* Linear dynamic relationship w.r.t. input, output, (state) signals pl Parameter
variation

 Relationship varies along a measurable scheduling signal p(t)

* Scheduling signal is assumed to vary independently in a set P Linearity =l LPV -

* LPV behavior is linear and time-invariant along p(?)

» 30+ years of development
» Strong theoretical framework (modeling, identification, control)
» Many successful industrial applications

8 lpvcg i
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Linear parameter-varying systems

Obtaining LPV models:

variation

* ‘True’ LPV models D | Parameter
e From nonlinear systems l

Y

Linearity u_, LPV —=

From nonlinear systems:
* Local approaches

* Global approaches

9 LPY
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The LPV concept: Principles & formulation
|
The local approach: '

Linearity u_, LPV _Z/»
e Schedule local linearizations of the system
* Measurable scheduling signal p(t) becomes exogenous!
IR I Scheduling
s i eall i [ ﬂi-ﬂl functlonsn
) e Altitude ; = 11 < : e T (interpolation)
e\ - ' LTI
. /f/ LTI(p(ts))
LTI(p(t1))

CORE

10 LPY &7




The LPV concept: Principles & formulation

variation

pl Parameter

The global approach: y

Linearity L N LP\/ 7>

* Introduce p(t) as latent variable s.t. remaining relations are linear
* We consider p(t) to be exogenous and measurable
* Embedding of NL behavior in LPV behavior

* No approximation!
Latent

T e
] Hm] &

Nonlinear system LPV embedding Resulting behaviours
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The LPV concept: Principles & formulation

Local and global approaches characterize the spectrum of LPV embedding principles.

* Local LPV modeling (inner approx.): L ittt J
1. Choose operating conditions P ﬁ
2. Linearize system at chosen points

3. Interpolate local models

o—.
o—t
! Linear
! System
o——+

Signal variables

* Global LPV modeling (outer approx.):

Global Local
approach

1. Choose SChedU“ng Signal approach
2. Transform system

Primary objective: reducing approximation error and/or conservatism

12




The LPV concept: Applications & outlooks

Many promising applications:
e Aerospace control
e Robotics and high-tech

* Process control

* Magnetic bearings & gyro control

* Automotive systems

* Energy management (batteries, inverter)

* Biomechanics

* Environmental (rain flow, canal models)

13
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LPV representations

State-space

Coefficient functions of representations characterized by:
* Functional dependence

» Static/dynamic dependence

. —

. . LPV system Input-output
Many different representations:

e State-space (LFR)

* |nput-Output

Series-expan.

* Kernel

* Infinite impulse response

System representations

Téth: Modeling and Identification of Linear Parameter-Varying Systems, Springer, (2010) lpvcf:
Ed
CORE =




LPV representations

Coefficient functions of representations characterized by:

* Functional dependence

» Static/dynamic dependence

State-space representations (static dependence)

with coefficient functions A : P — R™ %"= etc.

Téth: Modeling and Identification of Linear Parameter-Varying Systems, Springer, (2010)

Coefficient functions:
AP R™ ™

Functional dependence:

* Affine/linear

* Polynomial

e Rational

* Meromorphic

LPY

CORE

e
e
-
e
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LPV representations

Coefficient functions of representations characterized by:
* Functional dependence

» Static/dynamic dependence

Coefficient functions with

. . finite dynamic dependence
State-space representations (dynamic dependence)

it > A(p(t), &p(), S=p(1), )
z(t) = (Aop)(t)x(t) + (Bop)(t)u(t) Same functional dep. options!
y(t) = (C gp)(t)a?(t) + (D o p)(t)u(t) Discrete-time equivalent:

A(pr; Pk—1,Pk—2; - - - )

Shorthand for evaluation
over dynamic dependence

Téth: Modeling and Identification of Linear Parameter-Varying Systems, Springer, (2010) lpvgf:
Ed
CORE 2,




LPV representations

Kernel representations (dynamic dependence)

Nng .
Z(ri o p)(t) 51_;_ w(t) =0 Polynomials over R
0 R e RIE|™ ™™

~- / with R field of meromorphic functions
d
R(gz)op

Behavior is defined as:
B = {(w,p) € (R™ xP)* | (R(&) ¢ p)w =0}

Téth: Modeling and Identification of Linear Parameter-Varying Systems, Springer, (2010) lpv
CORE




LPV representations

Similarly for input-output representations:

Na . np iy Where:
S (aiop) ()& y(t) = S (b o p)(6) & ult) C oz,
i=0 =0 * wisa free signal
~ ~~ - N ~~ 4 « ydoesn’t contain any
RY(%) op Ru(%) op free components

Representations all fit in LPV behavioral framework (complete LPV systems theory)
* Associated notions of minimality, ‘'uniqueness’, controllability, observabilities, etc.

* Realization theory for equivalence transformations

Téth: Modeling and Identification of Linear Parameter-Varying Systems, Springer, (2010) lpvcf:
=’
CORE NA




LPV modeling

For the sake of the tutorial, focus on static scheduling dependence

How to obtain such an LPV representation?

e First-principles based Demonstrate with
Unbalanced Disc

e LPV system identification

* Local and global methods
* ARX, ARMAX, OE, Subspace methods, Frequency-domain
e Learning-based

* Direct data-driven (see IfA Coffee Talk)

20
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LPV modeling of the unbalanced disc

First-principles based modeling
* Input voltage: u

* Armature current: 7

* Angular position: 6

* Angular velocity: w

Nonlinear model with lumped electrical dynamics:

(6)= (0 ()« (8) - (73)

y:

22




Local LPV modeling of the unbalanced disc

. L T
Linearization at x, = (w* 9*) and wu,:

g: _% _nglCOS(H) ’ ﬁ: me : oh (O 1)
ox 1 0 ou 0 Ox

And interpolate the linearized LTI aspects as an LPV model:
* Choose the scheduling map 1/, describing local variations with p(t)
* p=1Y(z,u):=cos(f) withclearly P = [—1, 1]

e Static affine scheduling dependence Q/ ‘

23
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=0

LTI(p(

t2))

LTI(

(p(t1))
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Local LPV modeling of the unbalanced disc =~ '

[ .
&/ #

For the equilibrium manifold (w., 0., u.) = (0, 0., mng — sin(f,)), the LPV model is:

H(t) = (f mf(;p(”) () + (f) at), gt =(0 1))

with T =2 — z,, 4 = u — us, Yy = y — Y called trimming.

* If (x4, uy) is not an equilibrium point, W = f(z., u.) # 0 must be added

* Can be absorbed by trimming or treated as disturbance (o) f)
e If linearization is accomplished on a set of points, then Y o
A(p),...,D(p) can be obtained via interpolation or fitting Q/ § i
} LTI(p(t1)) | |
2 ’Lﬁ,‘gv &




Global LPV modeling of the unbalanced disc =~ -

— \
&/ o

Given the nonlinear dynamical equations:

- mgl - 1 Km
w = 7 Sln(ﬁ) — ;OJ -+ T’LL
0=uw
Now factorize the nonlinearities for linear dependence on 8, w, u,y
o mgl _ 1 Km
w=—"Lsinc(f)d — -w+ "2y

0 =uw

and define p = sm@(@) =sinc(f), p(t) € P =[-0.22,1] | o pﬁj By
{SNE LRV

25




Global LPV modeling of the unbalanced disc

Given the nonlinear dynamical equations:
- mgl - 1 Km
w = 7 Sln(Q) — ;OJ -+ Tu

0 =uw

Now factorize the nonlinearities for linear dependence on 8, w, u,y

Em

() = (‘f ‘Top(”) () + ( : ) u(®), )= (0 1))

sin(6)

and define p = = sinc(), p(t) € P = [-0.22,1]

0 u{g':

Direct conversion! No approximation & trimming!

—y

p

NL

LPV

Note: factorization generally not unique, but always possible under mild conditions

Koelewijn & Téth: Automatic Grid-based LPV Embedding of Nonlinear Systems. 7ech. Rep. TU/e (2021).

co
€:
e




LPV modeling of the unbalanced disc

How to do this in MATLAB? LPVcore

Van

e Open-source MATLAB toolbox for modeling, identification & control lpV‘é;;’
e

o

32 T

ON > 32

%

CORE
define scheduling

= preal('sinc(x1)"','ct','Range’,[-0.22, 1]); https://lpvcore.net
for local case: p = preal('cos(x1)','ct','Range’',[-1, 1]);

coefficient matrices of LPV-SS rep.
[-1/tau, -(m*g*1/3)*p; 1, @];

[@; Km/tau];

[6, 1];

e;

create LPV model

UnbalancedDisk = LPVcore.lpvss(A,B,C,D);

Usage analogous to MATLABs Robust Control and System Identification toolbox

26
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https://lpvcore.net/
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LPV control

Now we can model LPV systems... use them for analysis & control!

> This talk: Focus on control

In a nutshell:

* Inspired by robust control (one controller stabilizing all of P)

Nonlinear
>

System

» Sacrifices performance for robustness

* Make LPV controller dependent on p(t) u P

» K(p) designed for LPV system and implemented for NL system v

=
A

« With p(t) measured from the plant or exogenous signals

28




LPV control
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LPV control

Local and global methods:

—— e ==
N

|||||||||||||||||||||||||||

Nonlinear
System
\/
K
Implementation

—’/

PP M

G

p

K
Controller design

o)
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LPV control

Many available methods available:
e State-feedback synthesis
e Output feedback synthesis

e Model predictive control Coefficient functions:
AP — R™X"x
» Different strategies for different functional dependencies Functional dependence:

» All fit in a systematic framework (LFRs) . ﬁfﬁl'ne/“rjelar
* Polynomia

* Rational
* Meromorphic

a1 PV & o

CORE




LPV control

e Output feedback synthesis

. Nx XNx
AP — R

* Affine/linear

Polytopic approach for global LPV controller synthesis

3 LPY &7

CORE




LPV control

Designing a scheduling-dependent controller guaranteeing:
* Quadratic internal stability (Lyapunov-based)

* [5-gain based performance (extending H .-control)

For polytopic synthesis, assume:

)
p(t) € P = cohull{plV, ... p¥)} e ‘\fv
pﬁNV.)(/ \
P >
\ %
- 4
~ (i
0

33
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Configuration for LPV synthesis

Open-loop system:

( (t) ) ( flﬁp_(tl)_i_@w_ (p(t)) _ Bu(p(t))

2(t)
y(t)

34

\4

A(p)

- / 24 «— w
—
Y U
— o K
Wy 2K
k(D) [

lPVc

CORE



Configuration for LPV synthesis lp

( > A(p)
Open-loop system: 2 w,
() CA() _ Bu(p®) _ Bulp(®) \ [ x(t) j
40| = | o) Dale®) Due® | (0 )<, | p i,
y(t) Cy(p(t)) | Dyw(p(t)) 0 u(t) .
Controller: \ v u
Cik(t)  _ (CAx(p(®) 1 Br(p(t) \ (ex(t) —
( u(t) ) ( Cr(p(D) T Dx(p(?)) ) ( y(t) ) — =
Wy 2K
k(D) [e—

3 LPY & erc rc TU/e



Configuration for LPV synthesis

Open-loop system:

y(t)

Controller:

(4)-

34

(L) CA(p(t))__Bw(p(t)) _ Bulp®) \ (.
z(t) | = Cz(pgt)) | ID)zw(pE )  Dau(p(t))
t |

LPV &

CORE

\4

A(p) t|

P «— w
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U
K
2y
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Polytopic synthesis concept

Remember the Bounded Real Lemma?

If there exists a X > 0 such that

0O X, 0 0 I 0
(. X 0! 0_ 0 || Al _Bp) .
() 0”0 :Qp S, 0 7 <0 forallpeP
0 0'S, Rp C(p) D(p)

then quadratic performance is achieved for the controlled system!

Infinite set of LMs... How to make this computable?

35




Polytopic synthesis concept

With affine scheduling dependence of

(_ Alp(t)) 1 B(p(t)) )
C(p(t)) ' C(p(t))
(NV)...

infinite set of LMIs of prev. slide reduces to set of LMIs in vertices pg.l), ey Dy

How to guarantee this?
1. A( : 2.
_Ap) y Bulp) Bu
( C,(p) ' Dyw(p) Dgy is affine in p ( Axc(p) BK(p; ) is affine in p
Then closed-loop is affine in p(t)

36




Polytopic synthesis

By means of a well-known parameter-transformation and elimination, we arrive at:

We achieve quadratic performance for the controlled system if there exists a X > ( such
thatforall k =1,... N,

0O X, 0 0 I 0
(k) (k)
G A0 00 [ ART)_BOT) | L4
0 0,Q, Sp 0 I
0 0'S, Ry c(p®) Dp®)

e Concept behind this: Convex-hull relaxation

* For L5-gain based performance, i.e., |G||z, < v, choose (Qp, Sp, Rp) = (—v1,0,1)

Scherer & Weiland: Linear Matrix Inequalities in Control (Chapter 9), Lecture notes, (2022) lPVc;’
£
CORE NA




Polytopic synthesis — LPV Controller Construction

Solving the synthesis problem gives:

Axr Bk
X, ’ ) k=1....N,
(CK,k Dx

For implementation, represent p(t) € P as
N, Ny
p(t) =D M) p) with  Mp(t) >0, Y Me(t) =1
k=1 k=1

Then, the analysis inequalities are satisfied with

Ac(p(®)) Bx(p(®)) < Ak Bi
<0K<p<t>> DKW»)—ZW)( )

38




LPV Controller Construction — Comments

e For simulation and implementation, proceed as follows:
At time ¢, find convex combination coefficients in

Ak A B
_ (k) K,k K,k
t) = ];:1 Ak (1) py” and use g A (t (CK . DK,k)
to define the dynamics of the LPV controller.

* This requires the solution of an LP — Uniqueness: e.g., min || |3
 If original system affine, transform back to affine possible

* Generalizations exist for parameter-dependent storage X’

How “easy” is this?

39 lPV¢§
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LPV control in MATLAB

1. We have our plant:

41

system = LPVcore.lpvss(A,B,C,D);

Make generalized plant via

P=sysicorP=connect(...)

Simply call the 1pvsyn command with
[K, gam, Xcl] = 1lpvsyn(P, ny, nu);

Synthesizes an L2-gain optimal LPV controller

Simulate with our new controller!

LPY &

CORE

y € RY

u € R

LPY

CORE




M?Vc

Comments on LPVcore CORE

Analysis & synthesis tools available for:

Lo-gain

Generalized Hs-norm

Passivity
e Lco-gain
e Build with the ROLMIP and YALMIP open-source toolboxes (flexibility with solvers)

* Many available options: Control over scheduling dependence controller, pole constraints,
numerical conditioning hyperparameters, etc.

* For continuous-time and discrete-time analysis & synthesis

e Simulink blocks available

42




LPV control of the unbalanced disc

Really that easy? Yes, (with LPVcore)

Controller design:

:
oY &

https://lpvcore.net

21 ) Wy
W, p—— Wy |€&———
w1 T e | | YK u |
—> W TR P 0
I pas = | ‘ ;
<2
Wy, />
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https://lpvcore.net/

LPV control of the unbalanced disc

Really that easy? Yes, (with LPVcore)

% Interconnection structure
P = connect(UnbalancedDisk, sumblk('e = r - theta'),
sumblk('u = d + yk'),
{ ‘r','d", "yk’ }: { e, Yk, e })‘;
% Make generalized (weighted) plant
Pw = blkdiag(Wz,eye(ny)) * P * blkdiag(Ww,eye(nu));

% Synthesize!
[K, gamma, X] = lpvsyn(Pw, ny, nu);

wy

% gamma = 1.41

44

i/
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https://lpvcore.net/

-

< 2 !

,,i‘ - T
Really that easy? Yes, (with LPVcore) e
% Interconnection structure lpv A
e

P = connect(UnbalancedDisk, sumblk('e = r - theta'), ... CORE
Sumblk(lu d + yk.): https://lpvcore.net
{Ir\l’ldl’lykl},{lel,kal’lel});

% Make generalized (weighted) plant

Pw = blkdiag(Wz,eye(ny)) * P * blkdiag(Ww,eye(nu));

LPV control of the unbalanced disc

% Synthesize!
[K, gamma, X] = lpvsyn(Pw, ny, nu); &) "1
error LPV System
1 w\e >
% gamma = 1.41 Yod P !
scheduling

Continuous Time
LPV System

s LPY &7
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https://lpvcore.net/

LPV control of the unbalanced disc -

< 2 !

,,i‘ - T
Really that easy? Yes, (with LPVcore) e
% Interconnection structure lpv A
e

P = connect(UnbalancedDisk, sumblk('e = r - theta'), ... CORE
sumblk('u = d + yk.): https://lbvcore.net
{'r\')'dl).ykl}){'e'J.yk|)le'}); Parameters

% Make generalized (weighted) plant

Pw = blkdiag(Wz,eye(ny)) * P * blkdiag(Ww,eye System: K LPVcom iovss
% Synthesize! v

K amma, X] = lpvsyn(Pw, n nu);

[ C ’ ] P Y( Y )’ LPV System y I..1

‘\
% gamma [P u
scheduling
Continuous Time
LPV System
LPV f&-

* can:‘:z



https://lpvcore.net/

LPV control of the unbalanced disc — Simulation

3 B V"
Performance and =3
stability over full £27
operating range! =1 — / \
O | | | | | | "\/\ | | |
0 1 2 3 4 5 6 7 8 9 10
Time [s]

20

w(t) [rad/s]
-
—
F

-40

T

46




LPV synthesis comments

» Similar procedures exists for polynomial/rational dependencies, with variety of methods
(S-proc., 1QC’s, full-block multipliers)

* Gain-scheduling methods (gridding)
1. Grid the scheduling space

2. Synthesize controller for every grid-point

3. Interpolate controllers using linear, behavioral, spline-based interpolation
» Most standard use of LPV in the industry (available in Matlab)
e Currently working with Mathworks to push this further

47 lg¥c§ i
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Summary and final comments

* LPV modeling enables linear analysis and controller synthesis for

nonlinear and time-varying plants. Analysis and Control of
Nonlinear Systems with Stability
and Performance Guarantees

* Capable to go beyond limitations of LTI controllers (nominal,
robust, etc.) by exploiting measurable information on p(t)

A Linear Parameter-Varying Approach

e Compared to NL control, LPV control enables performance shaping
* Recent results use LPV control to go beyond Lyapunov

Active field of research:
* Automation & complexity/conservatism reduction of LPV embeddings
* Machine-learning assisted methods
» Data-based control (my focus of research €)

49 lPV$§
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Able to achieve marvelous designs!

https://www.youtube.com/watch?v=vytjdgNpGUM

Favb’c,day,_-""‘—
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