

LPV Modeling and Control

Tutorial on the Linear Parameter-Varying framework

CSCG Group Meeting, October 17th, 2023

Chris Verhoek

A few things about me

Eindhoven University of Technology (TU/e)

MSc in Systems & Control (TU/e)

PhD @ Control Systems group (EE) since Feb. '21

Roland Tóth & Sofie Haesaert

A few things about me

Hiking (multi-day trails)

Drumming (jazz)

Swimming

Table of contents

- A motivating example
- The linear parameter-varying concept
- LPV representations
- LPV modeling via the unbalanced disc
- LPV controller synthesis
- LPV control of the unbalanced disc
- Summary and final comments

Motivating example

ESA Space Rider

- Reusable space craft
- Multi-million euro vehicle
- Return to Earth autonomously
- Landing-precision requirement: ≤ 1 meter

Heavily nonlinear system, subject to harsh disturbances!

Need for accurate control with:

- Wide operating range
- Guaranteed stability & performance

Motivating example

Simplified aerodynamic model already rather complex...

➤ How to control this system?

Flight controller design:

- Hierarchal control structure (GNC)
- Needs to work for all operating conditions!

Our control options?

- Nonlinear control? → Performance shaping? Guarantees?
- Robust control? → Why sacrifice performance if we know the altitude?

Motivating example

Engineers' dream:

Design controllers for nonlinear systems with *linear control synthesis and shaping* concepts.

- ➤ Idea: Apply robust control by embedding variations as uncertainty.
- > Result: Controller can only stabilize a narrow operating range

Robust control systematically trades performance for stability and the size of the uncertainty a *single* LTI controller can stabilize is limited...

Overcome limitations requires going beyond LTI systems

Table of contents

- A motivating example
- The linear parameter-varying concept
- LPV representations
- LPV modeling via the unbalanced disc
- LPV controller synthesis
- LPV control of the unbalanced disc
- Summary and final comments

Linear parameter-varying systems

Core aspects of LPV systems

- Linear dynamic relationship w.r.t. input, output, (state) signals
- Relationship varies along a *measurable* scheduling signal p(t)
- Scheduling signal is assumed to vary *independently* in a set \mathbb{P}
- LPV behavior is **linear** and **time-invariant** along p(t)

- > 30+ years of development
- Strong theoretical framework (modeling, identification, control)
- Many successful industrial applications

Linear parameter-varying systems

Obtaining LPV models:

- 'True' LPV models
- From nonlinear systems

From nonlinear systems:

- **Local** approaches
- Global approaches

The LPV concept: Principles & formulation

The **local** approach:

- Schedule local linearizations of the system
- Measurable scheduling signal p(t) becomes exogenous!

The LPV concept: Principles & formulation

The **global** approach:

- Introduce p(t) as **latent variable** s.t. remaining relations are linear
- We consider p(t) to be exogenous and measurable
- Embedding of NL behavior in LPV behavior
- No approximation!

The LPV concept: Principles & formulation

Local and global approaches characterize the spectrum of LPV embedding principles.

- Local LPV modeling (inner approx.):
 - 1. Choose operating conditions
 - 2. Linearize system at chosen points
 - 3. Interpolate local models
- Global LPV modeling (outer approx.):
 - 1. Choose scheduling signal
 - 2. Transform system

system

P
Linear
System

Global
approach

approach

B

B

B

Cocal
approach

Nonlinear/time-varying

Primary objective: reducing approximation error and/or conservatism

The LPV concept: Applications & outlooks

Many promising applications:

- Aerospace control
- Robotics and high-tech
- Process control
- Magnetic bearings & gyro control
- Automotive systems
- Energy management (batteries, inverter)
- Biomechanics
- Environmental (rain flow, canal models)

Table of contents

- A motivating example
- The linear parameter-varying concept
- LPV representations
- LPV modeling via the unbalanced disc
- LPV controller synthesis
- LPV control of the unbalanced disc
- Summary and final comments

Coefficient functions of representations characterized by:

- Functional dependence
- Static/dynamic dependence

Many different representations:

- State-space (LFR)
- Input-Output
- Kernel
- Infinite impulse response

Coefficient functions of representations characterized by:

- Functional dependence
- Static/dynamic dependence

State-space representations (static dependence)

$$\dot{x}(t) = A(p(t))x(t) + B(p(t))u(t)$$
$$y(t) = C(p(t))x(t) + D(p(t))u(t)$$

with coefficient functions $A: \mathbb{P} \to \mathbb{R}^{n_x \times n_x}$, etc.

Coefficient functions:

$$A: \mathbb{P} \to \mathbb{R}^{n_{\mathbf{x}} \times n_{\mathbf{x}}}, \dots$$

Functional dependence:

- Affine/linear
- Polynomial
- Rational
- Meromorphic

Coefficient functions of representations characterized by:

- Functional dependence
- Static/dynamic dependence

State-space representations (dynamic dependence)

Coefficient functions with finite **dynamic** dependence

$$A(p(t), \frac{\mathrm{d}}{\mathrm{d}t}p(t), \frac{\mathrm{d}^2}{\mathrm{d}t^2}p(t), \dots)$$

Same functional dep. options!

Discrete-time equivalent:

$$A(p_k, p_{k-1}, p_{k-2}, \dots)$$

Kernel representations (dynamic dependence)

Behavior is defined as:

$$\mathfrak{B} = \{ (w, p) \in (\mathbb{R}^{n_{\mathbf{w}}} \times \mathbb{P})^{\mathbb{R}} \mid (R(\frac{\mathrm{d}}{\mathrm{d}t}) \diamond p)w = 0 \}$$

Similarly for input-output representations:

$$\underbrace{\sum_{i=0}^{n_{\rm a}} (a_i \diamond p)(t) \frac{\mathrm{d}^i}{\mathrm{d}t^i}}_{R_{\rm y}(\frac{\mathrm{d}}{\mathrm{d}t}) \diamond p} y(t) = \underbrace{\sum_{j=0}^{n_{\rm b}} (b_j \diamond p)(t) \frac{\mathrm{d}^j}{\mathrm{d}t^j}}_{R_{\rm u}(\frac{\mathrm{d}}{\mathrm{d}t}) \diamond p} u(t)$$

Where:

- $n_{\rm a} \ge n_{\rm b}$
- u is a free signal
- y doesn't contain any free components

Representations all fit in LPV behavioral framework (complete LPV systems theory)

- Associated notions of minimality, 'uniqueness', controllability, observabilities, etc.
- Realization theory for equivalence transformations

LPV modeling

For the sake of the tutorial, focus on static scheduling dependence

How to obtain such an LPV representation?

- First-principles based
- LPV system identification
 - Local and global methods
 - ARX, ARMAX, OE, Subspace methods, Frequency-domain
- Learning-based
- Direct data-driven (see IfA Coffee Talk)

Table of contents

- A motivating example
- The linear parameter-varying concept
- LPV representations
- LPV modeling via the unbalanced disc
- LPV controller synthesis
- LPV control of the unbalanced disc
- Summary and final comments

LPV modeling of the unbalanced disc

First-principles based modeling

Input voltage: u

• Armature current: *i*

• Angular position: θ

• Angular velocity: ω

Nonlinear model with lumped electrical dynamics:

$$\begin{pmatrix} \dot{\omega} \\ \dot{\theta} \end{pmatrix} = \begin{pmatrix} -\frac{1}{\tau} & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \omega \\ \theta \end{pmatrix} + \begin{pmatrix} \frac{\kappa_{\rm m}}{\tau} \\ 0 \end{pmatrix} u - \begin{pmatrix} \frac{mgl}{J} \sin(\theta) \\ 0 \end{pmatrix}$$

$$y = \theta$$

Local LPV modeling of the unbalanced disc

Linearization at $x_* = \begin{pmatrix} \omega_* & \theta_* \end{pmatrix}^{\top}$ and u_* :

$$\frac{\partial f}{\partial x} = \begin{pmatrix} -\frac{1}{\tau} & -\frac{mgl}{J}\cos(\theta_*) \\ 1 & 0 \end{pmatrix}, \quad \frac{\partial f}{\partial u} = \begin{pmatrix} \frac{\kappa_{\rm m}}{\tau} \\ 0 \end{pmatrix}, \quad \frac{\partial h}{\partial x} = \begin{pmatrix} 0 & 1 \end{pmatrix}, \quad \frac{\partial h}{\partial u} = 0$$

And **interpolate** the linearized LTI aspects as an LPV model:

- Choose the **scheduling map** ψ , describing local variations with p(t)
 - $p = \psi(x, u) := \cos(\theta)$ with clearly $\mathbb{P} = [-1, 1]$
- Static affine scheduling dependence

Local LPV modeling of the unbalanced disc

For the *equilibrium* manifold $(\omega_*, \theta_*, u_*) = (0, \theta_*, \frac{mgl\tau}{J\kappa_m}\sin(\theta_*))$, the LPV model is:

$$\dot{\tilde{x}}(t) = \begin{pmatrix} -\frac{1}{\tau} & -\frac{mgl}{J}p(t) \\ 1 & 0 \end{pmatrix} \tilde{x}(t) + \begin{pmatrix} \frac{\kappa_{\rm m}}{\tau} \\ 0 \end{pmatrix} \tilde{u}(t), \quad \tilde{y}(t) = \begin{pmatrix} 0 & 1 \end{pmatrix} \tilde{x}(t)$$

with $\tilde{x}=x-x_*$, $\tilde{u}=u-u_*$, $\tilde{y}=y-y_*$ called trimming.

- If (x_*, u_*) is not an equilibrium point, $\tilde{w} = f(x_*, u_*) \neq 0$ must be added
 - Can be absorbed by trimming or treated as disturbance
- If linearization is accomplished on a set of points, then $A(p),\ldots,D(p)$ can be obtained via interpolation or fitting

Global LPV modeling of the unbalanced disc

Given the nonlinear dynamical equations:

$$\dot{\omega} = -\frac{mgl}{J}\sin(\theta) - \frac{1}{\tau}\omega + \frac{\kappa_{\rm m}}{\tau}u$$

$$\dot{\theta} = \omega$$

Now **factorize** the nonlinearities for linear dependence on θ, ω, u, y

$$\dot{\omega} = -\frac{mgl}{J}\operatorname{sinc}(\theta) \theta - \frac{1}{\tau} \omega + \frac{\kappa_{m}}{\tau} u$$

$$\dot{\theta} = \omega$$

and define
$$p = \frac{\sin(\theta)}{\theta} = \operatorname{sin}(\theta), \ p(t) \in \mathbb{P} = [-0.22, 1]$$

Global LPV modeling of the unbalanced disc

Given the nonlinear dynamical equations:

$$\dot{\omega} = -\frac{mgl}{J}\sin(\theta) - \frac{1}{\tau}\omega + \frac{\kappa_{\rm m}}{\tau}u$$
$$\dot{\theta} = \omega$$

Now **factorize** the nonlinearities for linear dependence on θ, ω, u, y

$$\dot{x}(t) = \begin{pmatrix} -\frac{1}{\tau} & -\frac{mgl}{J}p(t) \\ 1 & 0 \end{pmatrix} x(t) + \begin{pmatrix} \frac{\kappa_{\rm m}}{\tau} \\ 0 \end{pmatrix} u(t), \quad y(t) = \begin{pmatrix} 0 & 1 \end{pmatrix} x(t)$$

and define
$$p = \frac{\sin(\theta)}{\theta} = \operatorname{sinc}(\theta), \ p(t) \in \mathbb{P} = [-0.22, 1]$$

Direct conversion! No approximation & trimming!

Note: factorization generally not unique, but always possible under mild conditions

LPV modeling of the unbalanced disc

How to do this in MATLAB? **LPVcore**

Open-source MATLAB toolbox for modeling, identification & control

```
% define scheduling
p = preal('sinc(x1)','ct','Range',[-0.22, 1]);
% for local case: p = preal('cos(x1)','ct','Range',[-1, 1]);
% coefficient matrices of LPV-SS rep.
A = [-1/tau, -(m*g*1/J)*p; 1, 0];
B = [0; Km/tau];
C = [0, 1];
D = 0;
% create LPV model
UnbalancedDisk = LPVcore.lpvss(A,B,C,D);
```


Usage analogous to MATLABs Robust Control and System Identification toolbox

Table of contents

- A motivating example
- The linear parameter-varying concept
- LPV representations
- LPV modeling via the unbalanced disc
- LPV controller synthesis
- LPV control of the unbalanced disc
- Summary and final comments

Now we can model LPV systems... use them for analysis & control!

> This talk: Focus on control

In a nutshell:

- Inspired by robust control (one controller stabilizing all of \mathbb{P})
 - Sacrifices performance for robustness
- Make **LPV controller** dependent on p(t)
- K(p) designed for LPV system and implemented for NL system
 - With p(t) measured from the plant or exogenous signals

Local and global methods:

Local and **global** methods:

Many available methods available:

- State-feedback synthesis
- Output feedback synthesis
- Model predictive control
- Different strategies for different functional dependencies
- All fit in a systematic framework (LFRs)

Coefficient functions:

$$A: \mathbb{P} \to \mathbb{R}^{n_{\mathbf{x}} \times n_{\mathbf{x}}}, \dots$$

Functional dependence:

- Affine/linear
- Polynomial
- Rational
- Meromorphic

Many available methods available:

- State-feedback synthesis
- Output feedback synthesis
- Model predictive control
- > Different strategies for different functional dependencies
- ➤ All fit in a systematic framework (LFRs)

Polytopic approach for global LPV controller synthesis

Coefficient functions:

$$A: \mathbb{P} \to \mathbb{R}^{n_{\mathrm{x}} \times n_{\mathrm{x}}}, \dots$$

Functional dependence:

- Affine/linear
- Polynomial
- Rational
- Meromorphic

Designing a scheduling-dependent controller guaranteeing:

- Quadratic internal stability (Lyapunov-based)
- \mathcal{L}_2 -gain based performance (extending \mathcal{H}_{∞} -control)

For polytopic synthesis, assume:

$$p(t) \in \mathbb{P} = \mathsf{cohull}\{p_{\mathrm{v}}^{(1)}, \dots, p_{\mathrm{v}}^{(N_{\mathrm{v}})}\}$$

Configuration for LPV synthesis

Open-loop system:

$$\begin{pmatrix} \dot{x}(t) \\ z(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} -\frac{A(p(t))}{C_{\mathbf{z}}(p(t))} & -\frac{B_{\mathbf{w}}(p(t))}{D_{\mathbf{zw}}(p(t))} & -\frac{B_{\mathbf{u}}(p(t))}{D_{\mathbf{zu}}(p(t))} \\ C_{\mathbf{y}}(p(t)) & D_{\mathbf{yw}}(p(t)) & 0 \end{pmatrix} \begin{pmatrix} -\frac{x(t)}{w(t)} \\ w(t) \\ u(t) \end{pmatrix}$$

Configuration for LPV synthesis

Open-loop system:

$$\begin{pmatrix}
\frac{\dot{x}(t)}{z(t)} \\
y(t)
\end{pmatrix} = \begin{pmatrix}
-\frac{A(p(t))}{C_{z}(p(t))} & -\frac{B_{w}(p(t))}{D_{zw}(p(t))} & -\frac{B_{u}(p(t))}{D_{zu}(p(t))} \\
C_{y}(p(t)) & D_{yw}(p(t)) & 0
\end{pmatrix} \begin{pmatrix}
-\frac{x(t)}{w(t)} \\
-\frac{x(t)}{w(t)} \\
u(t)
\end{pmatrix}$$

Controller:

$$\left(-\frac{\dot{x}_{\mathrm{K}}(t)}{u(t)}\right) = \left(-\frac{A_{\mathrm{K}}(p(t))}{C_{\mathrm{K}}(p(t))}\right) + \frac{B_{\mathrm{K}}(p(t))}{D_{\mathrm{K}}(p(t))} - \left(-\frac{x_{\mathrm{K}}(t)}{y(t)}\right)$$

Configuration for LPV synthesis

Open-loop system:

$$\begin{pmatrix} \dot{z}(t) \\ \dot{z}(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} -\frac{A(p(t))}{C_{\mathbf{z}}(p(t))} & -\frac{B_{\mathbf{w}}(p(t))}{D_{\mathbf{zw}}(p(t))} & -\frac{B_{\mathbf{u}}(p(t))}{D_{\mathbf{zu}}(p(t))} \\ C_{\mathbf{y}}(p(t)) & D_{\mathbf{yw}}(p(t)) & 0 \end{pmatrix} \begin{pmatrix} \dot{x}(t) \\ \dot{w}(t) \\ u(t) \end{pmatrix}$$

Controller:

$$\left(-\frac{\dot{x}_{\mathrm{K}}(t)}{u(t)}\right) = \left(-\frac{A_{\mathrm{K}}(p(t))}{C_{\mathrm{K}}(p(t))}\right) + \frac{B_{\mathrm{K}}(p(t))}{D_{\mathrm{K}}(p(t))} - \left(-\frac{x_{\mathrm{K}}(t)}{y(t)}\right)$$

Closed-loop system:

$$\left(\begin{array}{c} \dot{\underline{\xi}}(t) \\ -\overline{z}(t) \end{array}\right) = \left(\begin{array}{c} \mathcal{A}(\underline{p}(t)) \\ \overline{\mathcal{C}}(\underline{p}(t)) \end{array}\right) \left(\begin{array}{c} \mathcal{B}(\underline{p}(t)) \\ \overline{\mathcal{C}}(\underline{p}(t)) \end{array}\right) - \left(\begin{array}{c} \underline{\xi}(t) \\ \overline{w}(t) \end{array}\right)$$

Polytopic synthesis concept

Remember the **Bounded Real Lemma**?

If there exists a $\mathcal{X} \succ 0$ such that

$$(*)^{\top} \begin{pmatrix} 0 & \mathcal{X} & 0 & 0 \\ -\mathcal{X} & 0 & 0 & 0 \\ -\overline{0} & 0 & \overline{Q_{\mathrm{p}}} & \overline{S_{\mathrm{p}}} \\ 0 & 0 & S_{\mathrm{p}}^{\top} & R_{\mathrm{p}} \end{pmatrix} \begin{pmatrix} I & 0 \\ -\mathcal{A}(p) & \mathcal{B}(p) \\ -\overline{0} & \overline{I} \\ \mathcal{C}(p) & \mathcal{D}(p) \end{pmatrix} \prec 0 \quad \text{for all } p \in \mathbb{P}$$

then quadratic performance is achieved for the controlled system!

Infinite set of LMIs... How to make this computable?

Polytopic synthesis concept

With affine scheduling dependence of

$$\left(\begin{array}{c|c} \mathcal{A}(p(t)) & \mathcal{B}(p(t)) \\ \overline{\mathcal{C}(p(t))} & \mathcal{C}(p(t)) \end{array}\right)$$

infinite set of LMIs of prev. slide reduces to set of LMIs in vertices $p_{\mathrm{v}}^{(1)},\ldots,p_{\mathrm{v}}^{(N_{\mathrm{v}})}...$

How to guarantee this?

1.
$$\begin{pmatrix} A(p) & B_{\mathbf{w}}(p) & B_{\mathbf{u}}(p) \\ -\overline{C}_{\mathbf{z}}(p) & \overline{D}_{\mathbf{zw}}(p) & \overline{D}_{\mathbf{zu}} \\ \overline{C}_{\mathbf{v}} & D_{\mathbf{vw}} & 0 \end{pmatrix}$$
 is affine in p 2.
$$\begin{pmatrix} A_{\mathbf{K}}(p) & B_{\mathbf{K}}(p) \\ \overline{C}_{\mathbf{K}}(p) & D_{\mathbf{K}}(p) \end{pmatrix}$$
 is affine in p

Then closed-loop is affine in p(t)

Polytopic synthesis

By means of a well-known parameter-transformation and elimination, we arrive at:

We achieve quadratic performance for the controlled system if there exists a $\mathcal{X} \succ 0$ such that for all $k = 1, \dots, N_{v}$

$$(*)^{\top} \begin{pmatrix} 0 & \mathcal{X} & 0 & 0 \\ \mathcal{X} & 0 & 0 & 0 \\ -\frac{\mathcal{X}}{0} & 0 & Q_{p} & S_{p} \\ 0 & 0 & S_{p}^{\top} & R_{p} \end{pmatrix} \begin{pmatrix} I & 0 \\ -\frac{\mathcal{A}(p^{(k)})}{0} & \frac{\mathcal{B}(p^{(k)})}{I} \\ -\frac{\mathcal{B}(p^{(k)})}{0} & \mathcal{D}(p^{(k)}) \end{pmatrix} \prec 0.$$

- Concept behind this: Convex-hull relaxation
- For \mathcal{L}_2 -gain based performance, i.e., $\|G\|_{\mathcal{L}_2} < \gamma$, choose $(Q_p, S_p, R_p) = (-\gamma I, 0, I)$

Polytopic synthesis – LPV Controller Construction

Solving the synthesis problem gives:

$$\mathcal{X}, \qquad \begin{pmatrix} A_{\mathrm{K},k} & B_{\mathrm{K},k} \\ C_{\mathrm{K},k} & D_{\mathrm{K},k} \end{pmatrix}, \quad k = 1, \dots, N_{\mathrm{v}}$$

For implementation, represent $p(t) \in \mathbb{P}$ as

$$p(t) = \sum_{k=1}^{N_{\mathrm{v}}} \lambda_k(t) \, p_{\mathrm{v}}^{(k)}$$
 with $\lambda_k(t) \ge 0, \, \sum_{k=1}^{N_{\mathrm{v}}} \lambda_k(t) = 1$

Then, the analysis inequalities are satisfied with

$$\begin{pmatrix} A_{K}(p(t)) & B_{K}(p(t)) \\ C_{K}(p(t)) & D_{K}(p(t)) \end{pmatrix} = \sum_{k=1}^{N_{v}} \lambda_{k}(t) \begin{pmatrix} A_{K,k} & B_{K,k} \\ C_{K,k} & D_{K,k} \end{pmatrix}$$

LPV Controller Construction – Comments

• For simulation and implementation, proceed as follows: At time t, find convex combination coefficients in

$$p(t) = \sum_{k=1}^{N_{\rm v}} \lambda_k(t) \, p_{\rm v}^{(k)} \quad \text{and use} \quad \sum_{k=1}^{N_{\rm v}} \lambda_k(t) \begin{pmatrix} A_{{\rm K},k} & B_{{\rm K},k} \\ C_{{\rm K},k} & D_{{\rm K},k} \end{pmatrix}$$

to define the dynamics of the LPV controller.

- This requires the solution of an LP \rightarrow Uniqueness: e.g., $\min \|\lambda\|_2^2$
- If original system affine, transform back to affine possible
- Generalizations exist for parameter-dependent storage ${\mathcal X}$

How "easy" is this?

Table of contents

- A motivating example
- The linear parameter-varying concept
- LPV representations
- LPV modeling via the unbalanced disc
- LPV controller synthesis
- LPV control of the unbalanced disc
- Summary and final comments

LPV control in MATLAB

1. We have our plant:

- 2. Make generalized plant via
 - P = sysic or P = connect(...)
- 3. Simply call the 1pvsyn command with [K, gam, Xc1] = 1pvsyn(P, ny, nu); Synthesizes an \mathcal{L}_2 -gain optimal LPV controller
- 4. Simulate with our new controller!

Comments on LPVcore

- Analysis & synthesis tools available for:
 - \mathcal{L}_2 -gain
 - Generalized \mathcal{H}_2 -norm
 - Passivity
 - \mathcal{L}_{∞} -gain
- Build with the ROLMIP and YALMIP open-source toolboxes (flexibility with solvers)
- Many available options: Control over scheduling dependence controller, pole constraints, numerical conditioning hyperparameters, etc.
- For continuous-time and discrete-time analysis & synthesis
- Simulink blocks available

Really that easy? Yes, (with **LPVcore**)

Controller design:

https://lpvcore.net

Really that easy? Yes, (with LPVcore)

% Interconnection structure

https://lpvcore.net

Pw = blkdiag(Wz,eye(ny)) * P * blkdiag(Ww,eye(nu));

Really that easy? Yes, (with **LPVcore**)


```
% Synthesize!
[K, gamma, X] = lpvsyn(Pw, ny, nu);
% gamma = 1.41
```


Really that easy? Yes, (with **LPVcore**)

```
% Interconnection structure
P = connect(UnbalancedDisk, sumblk('e = r - theta'), ...
                                sumblk('u = d + yk'), \dots
                                                                              https://lpycore.net
                                {'r', 'd', 'yk'}, {'e', 'yk', 'e'});
                                                                     Parameters
% Make generalized (weighted) plant
                                                                      System:
                                                                                     LPVcore.lpvss
Pw = blkdiag(Wz,eye(ny)) * P * blkdiag(Ww,eye(nu));
% Synthesize!
[K, gamma, X] = lpvsyn(Pw, ny, nu);
                                           error
                                                                 LPV System
% gamma
                                         scheduling
                                                                Continuous Time
                                                                 LPV System
```


LPV control of the unbalanced disc - Simulation

Performance and stability over full operating range!

LPV synthesis comments

- Similar procedures exists for polynomial/rational dependencies, with variety of methods (S-proc., IQC's, full-block multipliers)
- Gain-scheduling methods (gridding)
 - 1. Grid the scheduling space
 - 2. Synthesize controller for every grid-point
 - 3. Interpolate controllers using linear, behavioral, spline-based interpolation
 - Most standard use of LPV in the industry (available in Matlab)
- Currently working with Mathworks to push this further

Table of contents

- A motivating example
- The linear parameter-varying concept
- LPV representations
- LPV modeling via the unbalanced disc
- LPV controller synthesis
- LPV control of the unbalanced disc
- Summary and final comments

Summary and final comments

- LPV modeling enables linear analysis and controller synthesis for nonlinear and time-varying plants.
- Capable to go beyond limitations of LTI controllers (nominal, robust, etc.) by exploiting **measurable** information on p(t)
- Compared to NL control, LPV control enables performance shaping
 - Recent results use LPV control to go beyond Lyapunov
- Active field of research:
 - Automation & complexity/conservatism reduction of LPV embeddings
 - Machine-learning assisted methods
 - Data-based control (my focus of research ⁹⁹)

List of interesting references:

LPV modeling and identification:

- Tóth (2010). Modeling and Identification of Linear Parameter-Varying Systems, Springer.
- Lopes dos Santos, et al. (2011). Linear Parameter-Varying System Identification: New Developments and Trends. World Scientific.
- Briat (2015). Linear Parameter-Varying and Time- Delay Systems: Analysis, Observation, Filtering & Control. Springer.
- Lovera et al. (2013). LPV modelling and identification: An overview. *In Robust Control and Linear Parameter Varying Approaches: Application to Vehicle Dynamics*, 3-24.
- Van Wingerden & Verhaegen (2009). Subspace identification of bilinear and LPV systems for open-and closed-loop data. Automatica, 45(2), 372-381.
- Abbas, et al. (2021). LPV modeling of nonlinear systems: A multi-path feedback linearization approach. *International Journal of Robust and Nonlinear Control.* 31(18), 9436-9465.
- Verhoek, et al. (2022). Deep-learning-based identification of LPV models for nonlinear systems. In Proc. of the 61st Conference on Decision and Control.

LPV control:

- Mohammadpour & Scherer (2012). Control of Linear Parameter Varying Systems with Applications. Springer.
- Hoffmann & Werner (2015). A survey of linear parameter-varying control applications validated by experiments or high-fidelity simulations. *IEEE Transactions on Control Systems Technology*, 23(2), 416–433.
- Scherer (2001). LPV control and full block multipliers. *Automatica*, 37(3), 361-375.
- Steinbuch, et al. (2003). Experimental modelling and LPV control of a motion system. In Proc. of the 2003 ACC. Vol. 2 (pp. 1374-1379).
- Koelewijn (2023). Analysis and Control of Nonlinear Systems with Stability and Performance Guarantees: A Linear Parameter-Varying Approach, PhD thesis.

Able to achieve marvelous designs!

https://www.youtube.com/watch?v=vytjdqNpGUM

